

 connecting the dots . . .

 Apr 20, 2015

 Machine Learning with Clojure and Spark using Flambo

 In this short tutorial I’m going to show you how to train a logistic
regression classifier in a scalable manner with
Apache Spark and
Clojure using Flambo.

Assumptions:

	you are familiar with Clojure and Leiningen
	you have heard of, or ideally - poked around Apache Spark
	you possess some basic Machine Learning skills

The goal of the tutorial is to help you familiarize yourself with
Flambo – a Clojure DSL for Apache Spark. Even though Flambo is far from being complete, it already does a decent job of wrapping basic Spark APIs into idiomatic Clojure.

During the course of the tutorial, we are going to train a classifier capable of predicting whether a wine would taste good given certain objective chemical characteristics.

Step 1. Create new project

Run these commands:

$ lein new app t01spark
$ cd t01spark

Here, t01spark is the name of the project. You can give it any name
you like. Don’t forger to change the current directory to the project
you’ve just created.

Step 2. Update project.clj

Open project.clj in a text editor and update the dependency section
so it looks like this:

:dependencies
 [[org.clojure/clojure "1.6.0"]
 [yieldbot/flambo "0.6.0"]
 [org.apache.spark/spark-mllib_2.10 "1.3.0"]]

Please note that although listing Spark jars in this manner is
perfectly fine for exploratory projects, it is not suitable for
production use. For that you will need to list them as “provided”
dependencies in the profiles section, but let’s keep things simple for now.

Make sure that AOT is enabled, otherwise you will see strange
ClassNotFound errors. Add this to the project file:

:aot :all

It also could make sense to add some extra memory for Spark:

:jvm-opts ^:replace ["-server" "-Xmx2g"]

Step 3. Download dataset

In this tutorial we are going to use the
Wine Quality Dataset. Download and save it along with the project.clj file:

$ wget http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv

Step 4. Start REPL

The simplest way is running Leiningen with the repl command:

$ lein repl
Clojure 1.6.0
Java HotSpot(TM) 64-Bit Server VM 1.8.0_xxx
...
user=>

Of course, nothing prevents you from running REPL in
Emacs with
Cider,
IntelliJ IDEA or any other
Clojure-aware IDE.

Step 5. Require modules and import classes

user=> (require '[flambo.api :as f]
 '[flambo.conf :as cf]
 '[flambo.tuple :as ft]
 '[clojure.string :as s])

user=> (import '[org.apache.spark.mllib.linalg Vectors]
 '[org.apache.spark.mllib.regression LabeledPoint]
 '[org.apache.spark.mllib.classification LogisticRegressionWithLBFGS]
 '[org.apache.spark.mllib.evaluation BinaryClassificationMetrics])

Step 6. Create Spark context

user=> (def spark
 (let [cfg (-> (cf/spark-conf)
 (cf/master "local[2]")
 (cf/app-name "t01spark")
 (cf/set "spark.akka.timeout" "300"))]
 (f/spark-context cfg)))

We’ve just created a Spark context bound to a local, in-process Spark
server. You should see lots of INFO log messages in the
terminal. That’s normal. Again, creating a Spark context like this
will work for tutorial purposes, although in real life you’d probably
want to wrap this expression into a
memoizing function and
call it whenever you need a context.

Step 7. Load and parse data

The data is stored in a CSV file with a header. We don’t need that
header. To get rid of it, let’s enumerate rows and retain
only those with indexes greater than zero. Then we split each row
by the semicolon character and convert each element to float:

user=> (def data
 ;; Read lines from file
 (-> (f/text-file spark "winequality-red.csv")
 ;; Enumerate lines.
 ;; This function is missing from Flambo,
 ;; so we call the method directly
 (.zipWithIndex)
 ;; This is here purely for convenience:
 ;; it transforms Spark tuples into Clojure vectors
 (f/map f/untuple)
 ;; Get rid of the header
 (f/filter (f/fn [[line idx]] (< 0 idx)))
 ;; Split lines and transform values
 (f/map (f/fn [[line _]]
 (->> (s/split line #";")
 (map #(Float/parseFloat %)))))))

Let’s verify what’s in the RDD:

user=> (f/take data 3)
[(7.4 0.7 0.0 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5.0)
 (7.8 0.88 0.0 2.6 0.098 25.0 67.0 0.9968 3.2 0.68 9.8 5.0)
 (7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.997 3.26 0.65 9.8 5.0)]

Looks legit.

Step 8. Transform data

The subjective wine quality information is contained in the Quality
variable. It takes values in the [0..10] range. Let’s transform
that into a binary variable by splitting it over the median. Wines with Quality below 6 will be considered “not good”, 6 and above - “good”.

I explored this dataset in R and found that the most interesting variables are Citric Acid, Total Sulfur Dioxide and Alcohol. I encourage you to experiment with adding other variables to the model. Also, using logarithms of those variables instead of raw values might be a good idea. Please refer to
the Wine Quality Dataset for the full variable list.

 user=> (def dataset
 (f/map data
 (f/fn [[_ _ citric-acid _ _ _
 total-sulfur-dioxide _ _ _
 alcohol quality]]
 ;; A wine is "good" if the quality is above the median
 (let [good (if (<= 6 quality) 0.0 1.0)
 ;; these will be our predictors
 pred (double-array [citric-acid
 total-sulfur-dioxide
 alcohol])]
 ;; Spark requires samples to be packed into LabeledPoints
 (LabeledPoint. good (Vectors/dense pred))))))

 user=> (f/take dataset 3)
 [#<LabeledPoint (1.0,[0.0,34.0,9.399999618530273])>
 #<LabeledPoint (1.0,[0.0,67.0,9.800000190734863])>
 #<LabeledPoint (1.0,[0.03999999910593033,54.0,9.800000190734863])>]

There is no order guarantee in derived RDDs, so you might get a different result.

Step 9. Prepare training and validation datasets

 user=> (f/cache dataset) ; Temporary cache the source dataset
 ; BTW, caching is a side effect

 user=> (def training
 (-> (f/sample dataset false 0.8 1234)
 (f/cache)))

 user=> (def validation
 (-> (.subtract dataset training)
 (f/cache)))

 user=> (map f/count [training validation]) ; Check the counts
 (1291 235)

 user=> (.unpersist dataset) ; no need to cache it anymore

Caching is crucial for MLlib performance. Actually, Spark MLlib algorithms will complain if you feed them with uncached datasets.

Step 10. Train classifier

MLlib-related parts are completely missing from Flambo, but that’s
hopefully coming soon. For now, let’s use the Java API directly.

 user=> (def classifier
 (doto (LogisticRegressionWithLBFGS.)
 ;; Otherwise we'll need to provide it
 (.setIntercept true)))

 user=> (def model
 (doto (.run classifier (.rdd training))
 ;; We need the "raw" probability predictions
 (.clearThreshold)))

 user=> [(.intercept model) (.weights model)]
 [9.805476268219566
 #<DenseVector [-1.6766504448212323,0.011619041367225583,-0.9683045663615859]>]

Step 11. Assess predictive power

First, let’s create a function to compute the area under the
precision-recall curve and the area under the
receiver operating characteristic
curve. These are two the most important indicators of the predictive
power of a trained classification model.

user=> (defn metrics [ds model]
 ;; Here we construct an RDD containing [prediction, label]
 ;; tuples and compute classification metrics.
 (let [pl (f/map ds (f/fn [point]
 (let [y (.label point)
 x (.features point)]
 (ft/tuple (.predict model x) y))))
 metrics (BinaryClassificationMetrics. (.rdd pl))]
 [(.areaUnderROC metrics)
 (.areaUnderPR metrics)]))

Obtain metrics for the training dataset:

 user=> (metrics training model)
 [0.7800174890996763 0.7471259498290513]

And then for the validation dataset:

 user=> (metrics validation model)
 [0.7785138248847928 0.7160113864756078]

OK, let’s turn L2 regularization on and rebuild the model:

 user=> (doto (.optimizer classifier)
 (.setRegParam 0.0001))

 user=> (def model
 (doto (.run classifier (.rdd training))
 (.clearThreshold)))

 user=> (metrics training model)
 [0.7794660966515655 0.748073583460006]

 user=> (metrics validation model)
 [0.7807459677419355 0.7200550175610565]

Looks good? I’m sure you can do better.

Step 12. Build predictor

As a final step, let’s define a function that we could use for
predicting wine quality:

 user=> (defn is-good? [model citric-acid
 total-sulfur-dioxide alcohol]
 (let [point (-> (double-array [citric-acid
 total-sulfur-dioxide
 alcohol])
 (Vectors/dense))
 prob (.predict model point)]
 (< 0.5 prob)))

 user=> (is-good? model 0.0 34.0 9.399999618530273)
 true

Conclusion

We have built a simple logistic regression classifier in Clojure on Apache Spark using Flambo. Some parts of the Flambo API are still missing, but it’s definitely usable. It was not terribly difficult to get it working and I hope you had fun.

 Sep 7, 2014

 Virtualization and Hadoop: Whys, Whats and Hows

 The idea of this article came after a series of conversations with
Hortonwork’s Adam Muise and Aaron Weibe, reflecting on my own
experience and things I’ve heard from some other Hadoop practitioners.

Let me start with an outrageous statement: I believe that in the Big
Data context Virtual Machines offer very little or no benefits beyond
improved security.

Let’s start with looking at the reasons why people use
virtualization at all, then talk about security aspects,
virtualization techniques and then I’ll try to summarize this experience
along with some practical recommendations.

Virtualization: The Why

1. Resource Utilization

Underused CPU and memory resources are a direct loss. The idea is that
you can cramp disparate services into the same physical box to have
better chances that it’s being used all the time. While utilization
used to be a 100%-valid concern with Hadoop-1, nowadays it’s not. YARN
addresses this problem, and if you stay within the YARN framework, no
additional technology is required. Another aspect of this problem is cross-domain
resource utilization. The question is: if I use my Hadoop-2 cluster
only one week a month, can I run something else than Hadoop on part of the nodes
the rest of the time? YARN is obviously of no help in this situation,
so a form of virtualization would be required.

2. Deployment Convenience

Instead of reconfiguring a system each time a new application is
installed, it’s possible to just boot different pre-built OS images as
virtual machines. When its mission is accomplished, a virtual machine gets
discarded and the physical host is ready for running a new app. This
is invaluable in a development environment. Consider a
situation when you need to try SparkR,
then say H2O on Hadoop, then some another
weird machine learning library, etc. Many of these things
would require installing dependencies. How to manage all this stuff?
Even though both Cloudera and Hortonworks offer cluster management
tools, those are – putting it mildly – not extremely helpful with OS
dependency management. At this moment virtualization is still the best
way to achieve the button-push deployment experience.

3. Security

One of the most lucrative promises of virtualization is
zero-maintenance process isolation. If your processes run in different
physical boxes, they cannot poke each other’s eyes, period. It seems
that we can reproduce this effect (to certain extent) by running
processes in virtual machines. Some people might say that Hadoop is
integrated with Kerberos, so what’s the problem? Kerberos is simply
not enough as the apps run on the same hardware, sharing the same
memory, file handles and buffers of the same instance of an OS kernel. Besides,
if you need multitenancy, only true virtualization is the answer.

Security is Isolation

Let’s gloss over different levels of isolation and their
corresponding threat models.

0. No isolation

This assumes a fully cooperative security model. If
somebody, even not maliciously, does something bad or just stupid,
everybody gets hurt. There are no security threats in this world.

1. Imposed isolation

That’s what you see in most operating
systems. You have got users, resources and permissions. If you’re
lucky, you get Access Control Lists (ACLs). Access to shared resources is limited
according to the permission settings. This type of isolation is
enough when you assume no serious insider threats. That is, you kinda
can hide things from people, and most of them will not violently try
to break the locks. Think of lockers in a gym, this is it.

2. Implicit isolation

Imagine reinforced concrete walls between
different security compartments. Resources are not only shared, they
are separated by design – ideally, at the physical level. All users
are adversaries and as such are considered security threats. This
level of isolation is a requirement in public multitenancy systems.

Virtualization

Now let’s briefly look at different virtualization techniques and
their suitability for Hadoop.

0. Bare metal

Boot to Hadoop. This level does not exist in reality,
I made it up. When I tell people this idea, they typically go like “this
might be interesting, but it’s not feasible”. Anyways, with bare-metal Hadoop the goal is
not to eliminate the operating system completely, but rather to make
the barrier between the hardware and the app as thin as possible. That
would mean replacing some system-level services with Hadoop-specific ones
and possibly bringing things like HDFS and YARN down to the OS Core. The
benefit is obvious – uncompromised performance. The drawback is that
it can be an unsurmountable task. There’s no isolation at this level,
which means no multitenancy at all.

1. Operating System

An OS is an abstraction of hardware, so to some
extent it’s a valid form of virtualization. At any point of time you
can wipe out an OS with all the apps and install it over again on the
same hardware. At this level you get some security, very simplistic
user-based isolation model and reasonably good performance. This is
what people typically mean when they say “bare metal”. Although
possible, isolation at the OS level is absolutely not adequate to
public multitenancy. Shared hosting lessons were learned and nobody is
doing it anymore.

2. Containers

Solaris Zones, LXC-derivatives, etc. The idea is to
isolate process groups at the OS kernel level, effectively creating
security compartments. Such a compartment, along with its associated
resources forms a container. Containers are assumed a reasonably safe
technology, although their fundamental isolation level – and this is
important – is the same as permission-based security. This is so,
because containers, in essence, are a mechanism of restricting
access to shared resources. Containers are susceptible to all the same
attacks as regular OS users. Although containers are currently not
popular in the Hadoop world, things are changing and some Hadoop
vendors directly recommend using containers instead of Virtual Machines.

3. Virtual Machines

Instead of fiddling with OS-level security
mechanisms, you basically say “OK, lets create a virtual machine with
a virtual CPU and totally separate memory within my host machine, and
run the app inside that VM”. Because resources are [mostly] not
shared, VMs achieve much better level of isolation. Of course, it’s more
complicated than that and there are at least three different types of
VM-based virtualization, but roughly this is the idea. Virtual Machines is
what you use when you run Hadoop on AWS or Rackspace.

So, why not use Virtual Machines all the time? There are two major
problems with this approach:

	VM’s are expensive. Expect 10-15%% CPU overhead comparing to “bare
metal” Hadoop.

	VM’s are unpredictable, especially when running in parallel. The same task
would take 30 minutes today and 45 minutes tomorrow simply
because of all the funny ways the VM’s OS interacts with the host
OS.

	If more than one VM is running on the same box, the IO performance
will suffer because of the host OS I/O system overload. And
it will hit hard because Hadoop is I/O-bound almost all the time.

Use cases and recommendations

Here is what I’ve seen working or heard from other people that it
works.

Safe environment, stable load

It’s simple and straight – go bare
metal. You will not be sorry about that, seriously. If you need
another security compartment, build another cluster.

Safe environment, varying load

Either rely on YARN for resource
management or consider using containers, especially if you ever need
to switch node roles. Use one container per physical box to not harm
the performance.

Unsafe environment

Only Virtual Machines are up to the task. If you cannot trust
your users, simply don’t use anything except VMs. Prepare to pay the
performance tax.

Containers: What to Use

Unfortunately, neither Hortonworks nor Cloudera currently offer a
turn-on container-based solution. Fortunately, it’s not that difficult
to build from scratch. A quick search would bring a few
Hadoop-on-Docker projects such as
docker-hoya.

I don’t see why it should not be possible to achieve the same with private cloud
solutions such as RedHat’s Openshift or ActiveState’s Stackato.

Conclusion

We looked at some basic virtualization concepts in the Big Data
context. Full virtualization technologies should be avoided if
possible. Containers play nicer with Hadoop than VMs, although there
are not so many out of the box Hadoop containerization solutions.

 Nov 9, 2013

 Installing SBCL 1.1+ on RHEL/CentOS systems

 The version of SBCL available on RedHat Enterprise Linux 6.4 (and CentOS) is 1.0.38, which is quite old. If your project requires a newer SBCL, it has to be installed manually.

Although sbcl.org offers some Linux binaries, those are incompatible with RHEL/CentOS 6.4. Compiling from the sources, unfortunately, is the only option.

This tutorial assumes a 64-bit system (x86_64). Compiling SBCL on a 32-bit platform might or might not work – I never tried it.

	The first step is to make sure you can compile programs:

sudo yum groupinstall "Development Tools"

	Then enable EPEL, this is necessary for the next step:

wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
sudo rpm -Uvh epel-release-6*.rpm

	Now, let’s install the old SBCL. We need it because SBCL’s Lisp compiler is written in Lisp, so it requires a working Lisp compiler to compile itself. This older SBCL binary can be safely removed later.

sudo yum install -y sbcl.x86_64

	Download SBCL source code. At the time of writing this post the latest version was 1.1.13:

wget http://downloads.sourceforge.net/project/sbcl/sbcl/1.1.13/sbcl-1.1.13-source.tar.bz2
tar xfj sbcl-1.1.13-source.tar.bz2
cd sbcl-1.1.13

	Compile the sources. Expect to see a lot of diagnostic messages.

./make.sh

	Install the compiled binary. The warnings about missing doc directory can be safely ignored. By default, the binary is installed in /usr/local/bin:

sudo sh install.sh

	Make sure it works. You should see “SBCL 1.1.13” in the response:

sbcl --version

	Remove the old SBCL:

sudo yum remove -y sbcl

	Optional: install Quicklisp. This is not strictly necessary, but having a CPAN-like Lisp package manager around will definitely make your life easier:

wget http://beta.quicklisp.org/quicklisp.lisp
sbcl --load quicklisp.lisp \
 --eval '(quicklisp-quickstart:install)' \
 --eval '(ql:add-to-init-file)' \
 --eval '(quit)'

Enjoy your new SBCL.

 Jun 27, 2013

 MySQL Connector: inherited transactions

 This is what I have noticed today: if a process opens an MySQL connection and then forks, the child process not just inherits the open connection, but also the transaction state. The current transaction becomes shared between the child and the parent. That is, if the child process rolls back, the parent also gets a roll back. Also, as it is the same transaction, a lock set by one process has no effect on another.

Here is a proof of concept:

"""
Create and populate a database before running this script:

create database mytest;
grant all on mytest.* to ''@'localhost';
flush privileges;
create table foo(a int);
insert into foo (a) values (0);
"""

import time
from multiprocessing import Process
import _mysql

reconnect = False # change to true to make the child process block (it should)

conn = _mysql.connect("localhost", user="mike", db="mytest", passwd="")

def sub():
 if reconnect:
 sub_conn = _mysql.connect("localhost", user="mike", db="mytest", passwd="")
 else:
 sub_conn = conn
 print "SUB: start", sub_conn.thread_id()
 print "SUB: do this to get the number of connections -> sudo lsof | grep mysql.sock"
 sub_conn.query('begin')
 sub_conn.query('select * from foo for update')
 if not reconnect:
 print "SUB: NOT BLOCKED, sleeping for 30 sec to hold the conneciton open"
 time.sleep(30)
 print "SUB: result", sub_conn.use_result().fetch_row()
 sub_conn.query('rollback')
 print "SUB: end"

print "HOST: start", conn.thread_id()
conn.query('begin')
conn.query('select * from foo for update')
print "HOST: result", conn.use_result().fetch_row()

process = Process(target=sub)
print "HOST: start sub"
process.start()
process.join()
print "HOST: sub joined"

conn.query('rollback')
print "HOST: end"

When reconnect is set to False, the parent’s thread id will be the same as in the child. The reason why is that MySQL uses server-side thread ids as connection identifiers. Here’s the mysql_thread_id function (mysql-connector-c-6.1.0-src/libmysql/libmysql.c:1070):

ulong STDCALL mysql_thread_id(MYSQL *mysql)
{

 return (mysql)->thread_id;
}

And this is how it is set in CLI_MYSQL_REAL_CONNECT (mysql-connector-c-6.1.0-src/sql-common/client.c:3613):

......
server_version_end= end= strend((char*) net->read_pos+1);
mysql->thread_id=uint4korr(end+1);
end+=5;
......

The direct consequence is that children processes, created for example using the multiprocessing module, must close the inherited MySQL connections and then reopen them to avoid surprises.

When I discovered it, I immediately thought about Django management commands splitting workload between children.

Open questions:

	Are Celery tasks affected by this? – probably yes.
	What happens when two processes sharing a transaction update data at the same time?

 Jun 6, 2013

 Multimethods in Python

 So, PEP-443 aka Single-dispatch generic functions has made it into Python. There is a nice writeup of the singledispatch package features by Łukasz Langa.

Although I’m glad that Python is evolving in the right direction, I can’t see how single dispatch alone could be enough. In essence, PEP-443 defines a way of dynamically extending existing types with externally defined generic functions. Which is nice, of course, but too limited.

What is really interesting is multiple dispatch. There are a few packages bringing multimethods to Python; all of them are overcomplicated to my taste.

Here’s my take on it. I will not talk much, better show you the code.

This is the complete implementation:

multidispatch.py

import operator
from collections import OrderedDict

class DuplicateCondition(Exception): pass

class NoMatchingMethod(Exception): pass

class defmulti(object):
 def __init__(self, predicate):
 self.registry = OrderedDict()
 self.predicate = predicate

 def __call__(self, *args, **kw):
 method = self.dispatch(*args, **kw)
 return method(*args, **kw)

 def dispatch(self, *args, **kw):
 for condition, method in self.registry.items():
 if self.predicate(condition, *args, **kw):
 return method
 return self.notfound

 def notfound(self, *args, **kw):
 raise NoMatchingMethod()

 def when(self, condition):
 if condition in self.registry:
 raise DuplicateCondition()
 def deco(fn):
 self.registry[condition] = fn
 return fn
 return deco

 def default(self, fn):
 self.notfound = fn
 return fn

 @classmethod
 def typedispatch(cls):
 return cls(lambda type, first, *rest, **kw: isinstance(first, type))

And here’s how to use it:

import types
from multidispatch import defmulti, NoMatchingMethod

Exhibit A: Dispatch on the type of the first parameter.
Equivalent to `singledispatch`.

cupcakes = defmulti.typedispatch()

@cupcakes.when(types.StringType)
def str_cupcakes(ingredient):
 return "Delicious {0} cupcakes".format(ingredient)

@cupcakes.when(types.IntType)
def int_cupcakes(number):
 return "Integer cupcakes, anyone? I've got {0} of them.".format(number)

@cupcakes.default
def any_cupcakes(thing):
 return ("You can make cupcakes out of ANYTHING! "
 "Even out of {0}!").format(thing)

print cupcakes("bacon")
print cupcakes(4)
print cupcakes(cupcakes)

Exhibit B: dispatch on the number of args, no default

@defmulti
def jolly(num, *args):
 return len(args) == num

@jolly.when(1)
def single(a):
 return "For {0}'s a jolly old fellow!".format(a)

@jolly.when(2)
def couple(a, b):
 return "{0} and {1} are such a jolly couple!".format(a, b)

print jolly("Lukasz")
print jolly("Fish", "Chips")
try:
 jolly("Good", "Bad", "Ugly")
except NoMatchingMethod:
 print "Noo! Angel Eyes!"

 Apr 17, 2013

 I will never CNAME my root domain again.

I will never CNAME my root domain again.

I will never CNAME my root domain again.

NEVER. EVER.

 Apr 13, 2013

 Hello Tumblr

 Good bye, Posterous. Rest in peace.

 Jun 6, 2012

 A simple callback chain macro for elisp

 The Problem

As usual, it started with a tiny piece of ugly code:

(bd-create-stage datafile-id
 (lambda (stage-id)
 (bd-insert-rows stage-id
 [[10 20 30] [40 50 60]]
 (lambda (stage-id)
 (bd-commit-stage stage-id
 #'ignore)))))

The snippet above is basically a callback chain. When bd-create-stage
finishes its work, it calls the first lambda, which calls
bd-insert-rows with the second lambda as its callback argument and so
on, until it all stops at the ignore function.

I wanted to rewrite it as something like this:

(=> datafile-id
 (bd-create-stage it next)
 (bd-insert-rows it [[1 2 3 4 5] [6 7 8 9 0]] next)
 (bd-commit-stage it next))

Where the it variable would represent the current callback’s
parameter and next would refer to the next callback in the chain. As
with the
-> macro, I
wanted explicit anaphoric variables.

The Idea

Each line in the snippet above could be wrapped in a lambda, lust like this:

(=> datafile-id
 (lambda (next it)
 (bd-create-stage it next))
 (lambda (next it)
 (bd-insert-rows it [[1 2 3 4 5] [6 7 8 9 0]] next)
 (lambda (next it)
 (bd-commit-stage it next))))

Then it should somehow call each function in the list with the
consequent function as the first parameter and the result of execution
of the previous function as the second parameter.

The Solution

This function chaining thing looks a lot like a binary function fold:

(defun chain2 (f1 f2)
 (apply-partially f1 f2))

(defun chain (&rest fns)
 (if fns
 (reduce #'chain2 fns :from-end t)
 #'identity))

Applying chain to a function list creates a new function taking one
parameter and passing it through the whole function list, much like
the -> macro does.

In fact, this is enough to start working on the macro.

(defmacro => (initial &rest forms)
 `(funcall ,(build-form-chain forms) ,initial))

The build-form-chain function wraps each form into a lambda and then
chains them together:

(defun build-form-chain (forms)
 `(apply #'chain
 (list ,@(mapcar #'build-form-link forms) #'ignore)))

At the end it adds ignore as a terminator. The terminator is necessary
because the last callback’s result is almost always ignored.

The build-form-link’s implementation is trivial:

(defun build-form-link (form)
 `(lambda (next it) ,form))

Done! Here’s the full source for your convenience:

(defun chain2 (f1 f2)
 (apply-partially f1 f2))

(defun chain (&rest fns)
 (if fns
 (reduce #'chain2 fns :from-end t)
 #'identity))

(defun build-form-link (form)
 `(lambda (next it) ,form))

(defun build-form-chain (forms)
 `(apply #'chain
 (list ,@(mapcar #'build-form-link forms) #'ignore)))

(defmacro => (initial &rest forms)
 `(funcall ,(build-form-chain forms) ,initial))

Now let’s see how the macro expands:

ELISP> (macroexpand
 '(=> datafile-id
 (bd-create-stage it next)
 (bd-insert-rows it [[1 2 3 4 5] [6 7 8 9 0]] next)
 (bd-commit-stage it next)))

(funcall (apply (function chain)
 (list (lambda (next it)
 (bd-create-stage it next))
 (lambda (next it)
 (bd-insert-rows it [[1 2 3 4 5] [6 7 8 9 0]] next))
 (lambda (next it)
 (bd-commit-stage it next))
 (function ignore)))
 datafile-id)

Exactly as intended.

This macro covers 95% of my callback chaining needs. For the rest 5%
there is the all-powerful deferred.el
library.

 May 9, 2012

 Thread operator in Elisp

 TL;DR

ELISP> (-> 1
 (+ 2 it)
 (* 3 it))
9
ELISP> (macroexpand
 '(-> 1
 (+ 2 it)
 (* 3 it)))
(let* ((it 1) (it (+ 2 it)) (it (* 3 it))) it)

Implementation:

(defmacro -> (arg &rest forms)
 `(let* ((it ,arg) .
 ,(mapcar (lambda (form) `(it ,form))
 forms))
 it))

The Long Story

When I see code like this, I frown:

(defun bd-search (api-key query callback)
 (send-request "GET"
 (format "search?%s"
 (make-query-string `(("api_key" . ,api-key)
 ("query" . ,query))))
 callback))

It’s a very simple case, yet the parameter list is already at the fourth level of indentation. When it gets really ugly I usually wrap the whole thing into a let statement and start moving inner parts into variables.

What I have noticed, however, is that almost always constructs like this are sequential by their nature, in other words the output of the innermost statement serves as input for the statement one level up, and so on and so forth. This is the very reason why Clojure had its thread operator macro since beginning.

Remembering that, I started literally morphing my bd-search function into something more prettier. I came up with this variant:

 (-> `(("api_key" . ,api-key)
 ("query" . ,query))
 (make-query-string it)
 (format "search?%s" it)
 (send-request "GET" it callback)))

Then I put together the -> macro and that was it.

I decided to make the macro anaphoric instead of implicitly injecting an extra parameter as in Clojure. This allowed me to put the threaded parameter at any place, not just at the beginning or at the end of the parameter list.

 Aug 27, 2011

 How much can be done in four hours

 Today I had an awesome day at the first OpenDataBC hackathon which took place at Mozilla Labs Vancouver.

Tara Gibbs pitched this wonderful idea of consolidating shelter availability data and displaying it on a few window displays, so the homeless people living DTES would not waste their time going from one shelter to another just to find a free spot.

This doesn’t solve all the problems of course, but it does solve a little yet very annoying one.

So… At 11:30 we had nothing but an idea. We discussed possible approaches for a while, then came David Eaves and suggested using Twitter as a message queue service.

At approximately 12:00 we still had nothing but a piece of paper covered with boxes and arrows, then we started coding. Tara did the frontend, I was busy hacking the backend and the Twitter stuff.

Four hours later we had a fully functional, production ready system - https://github.com/mikeivanov/vanshelter

How it is supposed to work:

	Shelters tweet their availability data (they all have internet access)
	VanShelter monitors – each of them independently – receive Twitter updates and
	Refresh their displays when something changes.

For displays we can use cheap LCD monitors, probably even donated. The software will run on those amazing Raspberry thingies - http://www.raspberrypi.org/, $25 each. This brings the full cost of installing 10 displays down to $250+.

Thank you Tara and David. Also, thank you Jeff and all the people who made this hackathon possible.

 Navigate

 « To the past
 Page 1 of 2

 About

 Subscribe via RSS.

 	Tumblr
	Theme by Simen

